Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption
نویسندگان
چکیده
The present study reports a novel concept of a direct solar thermal collector that harnesses the localized surface plasmon of metallic nanoparticles suspended in water. At the plasmon resonance frequency, the absorption and scattering from the nanoparticle can be greatly enhanced via the coupling of the incident radiation with the collective motion of electrons in metal. However, the surface plasmon induces strong absorption with a sharp peak due to its resonant nature, which is not desirable for broad-band solar absorption. In order to achieve the broad-band absorption, we propose a direct solar thermal collector that has four types of gold-nanoshell particles blended in the aquatic solution. Numerical simulations based on the Monte Carlo algorithm and finite element analysis have shown that the use of blended plasmonic nanofluids can significantly enhance the solar collector efficiency with an extremely low particle concentration (e.g., approximately 70% for a 0.05% particle volume fraction). The low particle concentration ensures that nanoparticles do not significantly alter the flow characteristics of nanofluids inside the solar collector. The results obtained from this study will facilitate the development of highly efficient solar thermal collectors using plasmonic nanofluids. [DOI: 10.1115/1.4005756]
منابع مشابه
Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications.
Different kinds of nanofluids show peculiar characteristics. In this work, a mixed nanofluid consisting of single-wall carbon nanohorns and silver nanoparticles aqueous suspensions is prepared and optically characterized, in the perspective to merge the favorable optical characteristics of carbon nanohorn-based nanofluids to the good thermal properties of silver-nanofluids. For the samples, bot...
متن کاملA report on the latest trends in nanofluid research
The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nano...
متن کاملA report on the latest trends in nanofluid research
The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nano...
متن کاملCarbon-Nanohorn Based Nanofluids for a Direct Absorption Solar Collector for Civil Application.
Direct solar absorption has been often considered in the past as a possible solution for solar thermal collectors for residential and small commercial applications. A direct absorption could indeed improve the performance of solar collectors by skipping one step of the heat transfer mechanism in standard devices and having a more convenient temperature distribution inside the collector. Classic...
متن کاملNanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review
The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inher...
متن کامل